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Abstract 
This paper describes an augmented reality system that 

incorporates a real-time dense stereo vision system. 
Analysis of range and intensity data is used to perform two 
functions: 1) 3D detection and tracking of the user’s 
fingertip or a pen to provide natural 3D pointing gestures, 
and 2) computation of the 3D position and orientation of 
the user’s viewpoint without the need for fiducial marks 
calibration procedures, or manual initialization.  The 
paper describes the stereo depth camera, the algorithms 
developed for pointer tracking and camera pose tracking, 
and demonstrates their use within an application in the 
field of oil and gas exploration.  

Keywords: vision-based tracking, natural interaction, 
unprepared environments, depth sensing, stereo 

 

1 Introduction 
 
Low power, compact hardware support for fast dense 

stereo depth computation enables new techniques for many 
applications. In Augmented Reality (AR), fast depth 
sensing can help in a number of areas including: more 
natural methods for interaction via robust gesture analysis, 
computing camera pose without requiring fiducial marks in 
the scene, and rendering dynamic real world objects with 
correct occlusion relationships with virtual objects. This 
paper addresses the first two issues.  New algorithms are 
presented to perform 3D detection and tracking of the 
user’s fingertip or a pen to provide natural 3D pointing 
gestures, and to compute the 3D position and orientation of 
the user’s viewpoint without the need for fiducial marks or 
complex calibration procedures.  These methods are 
incorporated into an existing AR system [4] and 
demonstrated within an application in the field of oil and 
gas exploration. 

Dense stereo depth has traditionally been too 
computationally intensive to use in real-time systems 
without one-of-a-kind specialized hardware [8] – producing 
issues of cost, form factor, and power consumption.  
Recently, a specialized ASIC [22, 19] has been developed 
for real-time dense stereo processing, creating new 

opportunities for low-power, real-time 3D systems.  The 
AR system presented here uses a Tyzx stereo vision system, 
which is described in more detail in Section 3. The rest of 
the paper describes the pointer tracking and pose tracking 
algorithms, followed by a target application in the field of 
oil and gas exploration. Finally we discuss directions for 
future work and our conclusions.  

 

2 Related Work  
 
Automated 3D detection of the user’s fingertip or a held  

pointer facilitates interaction with the virtual objects in an 
AR application. Rendering of the detected pointer also 
contributes to a shared understanding of the virtual space 
during collaboration [3, 18].  Previous approaches to 
pointer tracking have largely relied on instrumenting the 
pointer, e.g. with a Polhemus tracker [18, 12] or haptic 
device [20], which is undesirable from a usability 
perspective. There has also been some work on 2D vision 
based techniques [5] that has limited value because the 
motion of the hand is only captured in two dimensions (e.g. 
these methods require additional interface protocols - such 
as a pause or independent hand gesture - to indicate a 
“click” in a 3D mouse application). This work has also 
assumed a fixed camera position. A few authors have 
addressed 3D vision-based pointer tracking [15, 14] from a 
fixed viewpoint, however these approaches have been 
limited to tracking a hand, relying on skin color for 
segmentation or a full kinematic model of the hand. In both 
approaches the pointer features are extracted independently 
in two views and combined to compute 3D position.  No 
previous vision-based method has addressed 3D tracking of 
generalized pointers with a dynamic camera viewpoint 
against complex backgrounds.  The method presented here 
addresses all these issues through the use of dense stereo 
and intensity data.  

Automated real-time computation of the viewer/camera 
pose relative to the coordinate system of the virtual data is 
crucial in AR systems in order to maintain the perception 
that the virtual data is part of the real world.  There are 
many successful systems for vision based camera pose 
tracking [11, 23], most of which are based on fiducial 
markers introduced into the scene at known 3D positions. 



 

These methods are not appropriate for operation in 
unprepared (natural) environments.  Some work has 
focused on augmenting a limited set of fiducials with 
natural features automatically detected in the image [7, 9].  
Several authors have also addressed unprepared 
environments by using general structure from motion 
algorithms or modifications of these algorithms [17] to 
compute relative inter-frame motion. These methods require 
manual initialization to determine absolute camera pose and 
cannot operate in real time without simplifying 
assumptions. Little work has been done in real-time camera 
pose in unprepared environments using depth sensors. 
Using a depth sensor has the advantage of providing direct 
measured 3D relationships between image points – 
information which otherwise is provided by calibrated 
fiducials or manual initialization. The use of feature based 
(sparse) stereo to compute camera pose using natural 
features has been investigated [9]. Our approach differs in 
several important ways from this work: our system uses 
dense rather than sparse stereo, it does not require 
initialization with fiducial markers, does not integrate an 
inertial tracker, and runs on a single PC (rather than SGI 
Onyx2 IR with 16 CPU’s).  The camera pose-tracking 
algorithm presented does assume that the virtual data 
coordinate system is defined relative to a plane in the scene 
(table, floor, etc). This simplification is similar to that in 
[17], and fits well with the paradigms of many AR systems.  
It does not require any other prior knowledge about the 
scene, and can operate with natural complex backgrounds.   

 

3 Dense Real-time Stereo System 
 
The AR system developed is related to a previous 

handheld opera-glass display used in the MagicBook 
system [4]. A binocular display (800x600 pixel Inviso 
eShades) is coupled to a Tyzx stereo camera head (Figure 
1) for image capture. The stereo camera head is a 
lightweight (6 ounces) pre-calibrated unit with a baseline of 
1.5 inches. The left and right images are sent to a PCI board 

that hosts the Tyzx DeepSea ASIC. The DeepSea card is 
low power and contains the complete stereo computation 
engine, leaving the PC's processor essentially unburdened 
and available for other tasks.  

The DeepSea ASIC is capable of processing 512x480 
images at rates of 132 frames per second (fps) with a high 
depth resolution of 52 disparities. The imagers used in this 
application provide imagery at 30 fps.  Depth resolution in 
the near field (about 30 cm from the camera) is better than 
1 mm based on 3 bits subpixel match accuracy.  At about 
60 cm (maximum reach of the user) the depth resolution is 
just under 3 mm. 

Unlike feature based stereo systems, which compute 
sparse depth measures based on correspondence of high 
level features detected independently in each image, this 
stereo system computes depth on a pixel by pixel basis. 
This approach requires no a priori or application dependent 
knowledge about the scene. The underlying stereo matching 
algorithm used is the Census correlation [24], which is 
based on comparisons of relative intensity patterns.  The 
DeepSea ASIC uses a parallel, pipelined architecture first 
demonstrated in an FPGA implementation [22].  The 
system outputs 16 bit depth images as well as synchronized 
and rectified left and right images. Rectification aligns the 
images’ epipolar geometry and eliminates image distortion; 
the left image is registered to the depth image.  This 
imagery is ideal for use by binocular displays, and would 
not be available from any other type of depth sensor (laser 
scanner, time of flight).   

 

4 Natural Pointer Detection and Tracking 
 
The 3D position of a pointer controlled by the user is a 

valuable input for interaction design.  If a viewer would like 
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Figure 2: Pointer detection and tacking algorithm 

 Figure 1: The handheld display 



 

to discuss a location in the virtual dataset, it is very natural 
to simply point at this location as they view the data. We 
introduce a method of computing the 3D location of a 
viewer’s fingertip or held pointer, such as a pen, in the 
coordinate system of the virtual data.  A virtual pointer can 
be rendered into the scene at this location or into different 
views of the virtual data to aid in collaboration.  

Our pointer detection and tracking algorithm uses both 
range and intensity data. A Kalman filter is used to increase 
stability. The algorithm is summarized in Figure 2 and can 
be broken down into the following steps, which we describe 
in more detail below. 

1. Threshold range data beyond the reference plane 
2. Compute the intensity difference between the 

background model and the current frame 
3. Evaluate range support within the difference mask 

to reduce the effect of shadows and noise 
4. Locate the (x,y) tip of the pointer using a priori 

location estimate from the Kalman filter 
5. Use depth data to determine z coordinate of the 

pointer tip 
6. Update the Kalman filter with the detected 

location 
7. Use the difference mask to update the background 

model 
 

4.1 Selecting 3D region of interest 
The first three steps in the pointer tracking algorithm 

focus on segmenting the image data to identify in which 
pixels the hand or pointer appears.  We first segment the 
range data, then the intensity data, then combine these 
results to produce a foreground mask used in the remaining 
stages of the algorithm. 

In the paradigm of the earlier MagicBook system [4], the 
virtual data coordinate system is positioned with respect to 
one or more square targets on a planar surface (Figure 3).  
The planar surface provides an intuitive reference on which 
a virtual object rests. Following this approach, the pointer 
detection search is limited to the space between the 
reference plane and the viewer.  

The transform between the virtual data coordinate 
system and the camera view coordinate system is often 
referred to as the model view matrix, M, or the camera 

pose.  The virtual data coordinate system is defined as 
shown in Figure 3. In the camera coordinate system, the x/y 
plane is parallel to the imager, and the z axis points 
perpendicular to the imager, out into the scene. M is 
computed either from the target image (based on known 
metric relationships between points on the target), or using 
the 3D data on the planar surface as described in Section 5. 
This transform defines the position of the reference plane 
(x/y plane in the model coordinate system) in the camera 
view.  We use the z coordinate of the reference plane in 
camera view to threshold the depth data at every pixel - 
such that we consider only data closer to the viewer than the 
reference plane. 

 

4.2 Computing the foreground mask 
We use intensity data to improve reliability of the 

pointer detection when range can not be measured at all 
points on the hand/pointer and to improve the segmentation 
of the pointer boundary.  Background subtraction is a 
classic method of image segmentation in which the typical 
appearance at each pixel is used to model the background. 
Any pixel that isn’t modeled well by the background 
statistics is then taken to be part of the foreground.  This 
has been used very successfully in fixed camera views with 
both depth and intensity image statistics [6]. However, the 
viewpoint with the handheld display is constantly varying.  
Therefore, we model the background in the more stable 
coordinate system of the virtual world. We define the 
background model to be the intensity pattern on the 
reference plane, as seen from the positive z-axis in the 
virtual model coordinate system (see Figure 4D). The 
background model is initialized (using M-1 and taking the 
depth at each pixel to be the depth of the plane) based on 
the view when there is no object detected in the scene (or at 

 

Figure 3: Virtual model coordinate system. Origin is 
center of target. Target plane is X/Y plane. Z axis is 
perpendicular to the target. 
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Figure 4: A) left image, B) difference mask, 
showing range support in white, C) geodesic 
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further, minimal path shown in red, and D) 
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the time the pointer mode is turned on).  The background 
model is updated at each frame, using the foreground mask 
to insure we do not corrupt the model with foreground data.  

To perform the background subtraction we use M to 
transform the background model into the current camera 
view, and then take the absolute value of the difference 
between the transformed model and the current left image at 
every pixel where data is defined for both views.   

The raw difference image has several undesirable 
properties that we must address. First, small errors in the 
estimation of the camera pose will cause slight 
misalignments in view. These misalignments can cause high 
difference values that do not correspond to foreground 
pixels.  The difference mask is filtered with a 
morphological opening to eliminate up to approximately 
one pixel misalignment effects.  A larger morphological 
closing is also used to fill holes in the mask caused when 
there are similar intensity values in background and 
foreground.  Second, shadows will be represented in the 
difference mask but are not part of the pointer itself. The 
depth values on the shadows would be at the depth of the 
plane (or undefined if there is no texture), so we eliminate 
components of the difference mask that have no depth 
support.  Although we eliminate these points from the mask 
used for further pointer tip analysis, we do not update the 
background at the detected shadow points.  Figure 4 shows 
some intermediate steps of the pointer processing.  The 
image in Figure 4A is the left intensity image, showing a 
hand reaching into the scene holding a pen.  The foreground 
mask computed is shown in Figure 4B, with the range 
support shown in white.  

 

4.3 Locating the pointer tip 
The pointer tip detection is done in the camera view 

space.  The location algorithm is based on the simple 
observation that if the viewer is reaching into the scene 
their hand or arm will always intersect the border of the 
image.   The location of the tip of the pointer in the 2D 
foreground mask will therefore be the point farthest from 
the image border, where distance is measured only within 
the shape of the foreground mask. More specifically, the tip 
will be the maximum geodesic distance from the border 
(Figure 4C). The z value at the tip is computed from the 
depth image.  The 3D orientation of the pointer is also 
computed by considering the minimal path away from the 
tip location towards the border (shown in red in Figure 4C).  
The 3D points along the first 2 cm of this path are fit to a 
line that provides the orientation vector of the pointer.  A 
Kalman filter with a constant velocity motion model is used 
to stabilize the tip location and provide an estimate of the 
tip location for the subsequent frame.  M-1 is used to 
transform the position of the pointer into the virtual model 
space where it can be used to interact with the virtual 
content.  
 
 

5 Camera Pose Tracking 
 
Camera pose tracking is a critical part of any AR system.  

The task is to determine the six degree of freedom 
transform between the virtual data coordinate system and 
the camera coordinate system, M, which is often referred to 
as the model view matrix because it maps the model into 
the current view.  M is determined by three rotation angles, 
α, β, γ, and a 3D translation, Tx, Ty, Tz. The pose tracking 
algorithm we have developed, summarized in Figure 5, 
makes use of the dense range data to determine the equation 
of the reference plane in each frame. Fitting the depth data 
from a large number of pixels to a plane reduces instability 
due to measurement error. The orientation of the reference 
coordinate system on the plane (γ), and the location of the 
origin of the reference coordinate system on the plane are 
determined based on the relative locations of intensity data 
features on the surface of the plane. The three degrees of 
freedom that are determined directly from the depth data at 
each frame will not be subject to drift.  This provides an 
advantage over structure from motion algorithms that 
determine all six degrees of freedom relative to the previous 
frame, and hence are subject to drift in all six parameters.  
We also provide an explicit drift correction step based on a 
map of “global” intensity features. The algorithm can be 
broken down into the following steps: 

1. Detect planes in depth image: set α, β, Tx, Ty, Tz 
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2. Map intensity on candidate plane to the model 
coordinate system creating the normalized view, Ni  

3. Find 2D transform matching Ni to Ni-1: set γ, and 
update  Tx, Ty, Tz 

4. Match adjusted Ni to global view: refine γ, Tx, Ty, 

Tz to correct for drift 
5. Update global view with newly visible features 
 

5.1 Detecting the Reference Plane 
At each frame the incoming depth image is first 

processed to find candidate reference planes.  A least 
squares plane fit is performed in each 25x25 window of the 
data. The regions are iteratively merged, beginning with the 
best fit plane, with other similar planes detected. The final 
set of planes is compared with the tracked plane from the 
previous frame to determine correspondence.  
Correspondence is based on a comparison of plane 
orientation and distance from the viewer.  If no planes were 
previously tracked, a track is initialized based on the 
detected plane that includes the most data points.  The 
orientation and distance of the plane provides 3 degrees of 
freedom of the pose.  The 2D position of the origin of the 
model coordinate system on the plane and the rotation of 
the coordinate system about its z axis (γ) cannot be 
determined from the range data itself in our application (in 
which the view often contains only the reference plane). 
The origin is set arbitrarily (to the projection of the image 
center on the plane) at this point and corrected in the 
following steps based on the intensity data and the pose in 
previous frames. Similarly, γ is initially set to zero.  We 
refer to the model view transform in this partially 
determined state as, M′. 

 
5.2 Normalized View 

The intensity data in the left image that is part of the 
detected plane is mapped to the model view using  
(M′)−1.  This transform will place the image data on the x/y 
plane of the model coordinate system. The image will look 
as if we are seeing the scene from a constant distance 
directly above the plane. We refer to this as a normalized 
view because we have factored out the effect of plane 
orientation and viewing distance.  Computing the 
normalized view in each frame reduces the pose tracking 
problem to a search for a 2D rigid transform: a single angle 
of rotation and a 2D translation, aligning Ni to Ni-1, the 
previous frame’s normalized view. 

 

5.3 Determining On-Plane Rotation and 
Translation 

There have been many solutions presented to find the 
best 2D transform aligning two images.  For efficiency, we 
use a feature based method. The feature selection and 
tracking method presented in [16] is used to identify local 
intensity regions that are considered optimal for tracking 
(regions that have strong edges in multiple directions). The 

feature locations identified in the first image are 
independently tracked into the second image, based on a 
Newton-Raphson method minimizing the difference 
between two image windows.  Since a rigid transform 
should preserve distances, we use this principle to remove 
features that have been tracked poorly before computing the 
transform.  

 More specifically, we construct an F x F matrix, D, 
where F is the number of features tracked between images.   

D(i,j) = | ||fi –fj || - ||fi
′ –fj

′ || |, 
where fi is the detected location of feature i and fi

′ is the 
tracked location.  Based on the observation that a badly 
tracked feature would have higher relative distance to most 
correctly tracked features, we begin with the feature that has 
the highest row (or column) sum, and remove features until 
the maximum entry of any row is below a threshold. 

The optimal 2D transform that maps the features onto 
their tracked locations is computed using a singular value 
decomposition as presented in [2].  The resulting 2D 
rotation angle is added to the previous frame’s solution for 
γ, the rotation angle about the model z axis. The 2D 
translation is used to modify the previous frame’s estimate 
of the origin of the model coordinate system.  

 

5.4 Compensating for Drift 
Pose parameters that are computed relative to the 

previous frame’s solution will typically exhibit drift over 
time as error accumulates.  We introduce a global feature 
map in order to reduce the effect of drift. The global feature 
map is a 2D map indicating the location of intensity 
features (and the intensity pattern around the points) on the 
reference plane that have been identified as good areas for 
tracking.   It is maintained in the normalized view, 
representing the x/y plane of the model coordinate system. 
At the time the reference plane is initially detected, the first 
set of intensity features is added to the map. In each 
subsequent frame, new features are added that do not 
overlap those already on the map.  

A new normalized view, Ng, based on the inverse of the 
current full pose estimate, M, is created and compared to 
the global feature map.  The alignment error between these 
two views will be due to error in the pose computation 
process, and should be very small – indeed, it is typically 
less than a pixel.  We find the best 2D transform aligning Ng 

to the global map using the same method discussed above.  
The resulting rotation and translation are used to refine the 
pose parameters.   

The 3D rotation and translation transforms based on the 
estimated α, β, γ, Tx, Ty, Tz, are composed to form the final 
camera pose estimate, M.  By anchoring the results to the 
global features at each frame, the camera pose remains 
stable over many frames.   
 

6 A Prototype Application 
 



 

The techniques we have described remove the need for 
fiducial based AR tracking and allow users to interact with 
virtual content using their free hands or natural objects. As 
such dense stereo methods can be used in a wide range of 
possible application areas. The application area we have 
initially selected is scientific visualization in the petroleum 
industry. The dense stereo tracking and interaction 
techniques have been implemented in a prototype AR 
visualization system being developed at ChevronTexaco. In 
this section we first describe the motivation for this system, 
then the implementation and user experience.  

6.1 Motivation 
The oil and gas exploration and production (E&P) 

industry has been using visualization techniques for a 
number of years. Immersive projection environments are 
becoming common.  These are used to create, understand 
and refine large and complex models of the earth’s 
subsurface for the purposes of finding oil and gas bearing 
reservoirs.  One of the greatest recognized values of the 
immersive projection environments is the collaboration they 
provide to cross-functional teams of earth scientists and 
engineers working on a field.  However, collaboration in a 
stereo projection environment has several drawbacks.  
Currently, only one or two distinct user perspectives can be 
supported and all other views have some distortion.  A high 
level of expertise is needed to drive the application in the 
environment, which causes some participants to be unable 
to participate in determining the view of the model.  Costs 
limit the number of immersive projective environments, 
allowing only a few teams to work at a time and the 
technology is not available at all office or work locations. 

Due to the high cost of drilling wells (up to $35 million 
USD) and the high risk of failure (1 in 10 exploration wells 
result in an economic reservoir), most E&P companies do 
not explore and produce fields alone but partner with other 
E&P companies.  Partner meetings are frequent, with the 
involved companies coming together to agree on the earth 
model, the risks involved in drilling, well path direction and 
final well location.  These meetings, unfortunately, do not 
always take place where an immersive projection 
environment is available.   

The goal of our AR application research is to provide a 
method of viewing the data at partner meetings.  The 
application must be portable, secure, and intuitive.  Data 
models are always changing, as more information about the 
subsurface becomes available.  To incorporate these 
changes, the data models must be easily updated.  The 
current method of viewing the data is to show 2D paper 
maps that display the earth model at various depths or fixed 
views from a 3D modeling application. (Figure 6) 

Using AR technology we can provide a portable 
visualization system that gives some of the capability of 
immersive projection displays at considerably less cost. In 
addition, if each user has their own handheld display they 
can get independent views into a dataset and collaboratively 

discuss the same model. In working toward this vision we 
have developed several prototype interfaces that we 
describe in the next section.  

 

6.2 Implementation 
In the first version of this interface, the ARToolKit 

tracking library [1] was used to superimpose virtual models 
on a set of fiducial markers. When users look through the 
handheld display at a sheet of paper with squares printed on 
it, they see 3D virtual seismic and oilfield information 
overlaid on the paper (Figure 7). On this terrain model, 
virtual cubes represent the location of wells in an oil field. 
Some of the wells in the field produce oil while others 
inject steam into the reservoir. (The steam loosens the oil, 
allowing it to flow.) Users can interact with the model using 
a handheld paddle (Figure 8). They are able to touch 
individual oil wells in the model to see information about 
the capacity and flow rate of that well. Users have the 
option to show all wells, production wells or steaming 
wells. 

 
Figure 6: Fixed view plot of 3D earth model 

 

Figure 7: AR View of the Oilfield Wells 



 

  The paddle can also be used to manipulate the entire 
model. In the viewpoint move mode the motions of the 
paddle are mapped onto model rotation and zooming. As 
the user moves the paddle left and right the entire model 
rotates about its vertical z axis, while up and down motion 
rotates the model about the horizontal x axis, and moving 
closer and further to the user’s view (along the z axis) 
zooms the model in and out. In this way the user can see the 
model from any viewpoint, or zoom in to get a close view 
of the wells (Figure 9). Users can toggle between 
pointer/selection mode and the viewpoint move mode either 
through keyboard commands or voice commands (using 
Microsoft Speech SDK 5.1). 

The current prototype builds on this earlier work by 
replacing the fiducial tracking with dense stereo interaction. 
Three dimensional pointer detection and tracking capability 
was added to the system to provide a natural alternative to 
the paddle interface. Figure 10 shows the AR view of a 
subsurface view of a virtual earth model. This model 
displays two surfaces and five faults to represent the 
reservoir location.  Red lines and yellow derricks represent 
the well locations in the reservoir.  The users can use either 
their finger (Figure 10a) or a pen (Figure 10b) as a pointing 
device.  This allows them to show interesting parts of the 
model to others involved in the discussion.  They can 

physically move around the model or move the pattern 
sheet around to show the different orientations of the 
model.   

The camera pose that is required in the pointer tracking 
can be computed via the traditional ARToolKit target-based 
method, or via the depth based camera pose method of the 
previous section.  With the natural pointer detection method 
described in section 4, users can interact with virtual 
models with the same functionality as provided by the 
fiducial paddle. However, there is no need to use a specially 
marked object; users can select and rotate the model with 
their hand or an ordinary pen. 

 Natural plane camera pose tracking is included as an 
alternative for the target-based method. Figure 11A shows 
the instantiation of the earth model into an AR scene using 
the camera pose solution of the new natural plane method. 
Figure 11B shows the same model based on the camera 
pose computed with the target method after fiducial patterns 
are introduced to the scene.  The position of the camera is 
the same in both views.  The orientation of the model is 
aligned with the table in both cases and the model is shown 
at the same scale.  The primary difference between the two 

 
 

Figure 10: AR view of earth model and the 
finger or pen used as 3D pointer. 
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Figure 9: Virtual Terrain Model 
 

Figure 8: Paddle Interaction with Well Models 



 

methods is in how the initial position of the virtual data on 
the reference plane is established.  With the ARToolKit-
based system, the user indicates the initial position and 
orientation of the virtual model by selecting the position 
and orientation of the physical target.  In the case of the 
non-target mode, the origin on the plane and the rotation 
about the model’s z axis cannot be detected directly from 
the input data.  The model is instantiated at the orientation 
of the reference plane, but with a zero degree rotation about 
its z axis, and at the projection of the center of the image on 
the plane.  As the viewpoint changes, the model maintains 
this position. The user can move the origin of the model by 
pointing at a new location with their finger, and can rotate 
the model about its z-axis with pointer gestures in 
viewpoint move mode as described above. It would also be 
straightforward to use a target to provide the initial position 
of the model, while using the 3D image data to track this 
position and orientation. This would be useful for 
interacting with large datasets, for which the target may pan 
out of view or be blocked by other gestures. 

With the inViso eShades used in the handheld display, 
the virtual models can be showed in stereo.  The binocular 
display receives frame sequential stereo images.    The 
ocular separation can also be adjusted for each user to 
enhance the viewed image. Users can toggle between stereo 
and monocular views. 

The pointer detection and tracking mode runs 
concurrently with the target based camera pose tracking at 
10 fps on an HP PC workstation with dual 1.7GHz Xeon 
CPU’s. The implementation has not been multithreaded to 
take explicit advantage of the second processor; the same 
code running on a single processor 1.7GHz P4 runs at 9fps.  
Additional performance tuning is necessary to improve the 
interaction speed – at this update rate moderate velocity 
motions are tracked successfully, but tracking can be lost 
during higher velocity motions.  The depth based pose 
tracking algorithm runs at 6 fps in its current (unoptimized) 
implementation.  As with the pointer algorithm, the slow 
frame rate limits the velocity of the camera motion that can 
be continuously tracked.  The user also sees more jitter in 
the model position using the non-target camera pose 
solution. We are currently working to improve stability by 
incorporating a Kalman filter.    

The models used in this interface were VRML 97 files 
generated from GIS datasets. The well locations were 
measured from maps of the oilfields and inserted onto the 
terrain. The libVRML library was used to perform the 
VRML rendering [13]. 

 

6.3 User Experience 
User response to viewing earth models in our system has 

been very positive.  The initial rollout of the application 
included a demonstration to 37 users. Most liked the 
intuitive and collaborative aspects of the application. 
Carrying a laptop with the model on disk and a paper target 
of meaningless symbols is a more secure way to protect 

company information than carrying a stack of paper maps. 
As the users became accustomed to gathering around the 
display and discussing possibilities, the top priority for 
improvement was to add pointer capability to the 
application. 

The small group of test users thought that the addition of 
the natural hand pointer furthered the understanding of the 
data and created possibilities beyond the basic 3D pointer.  
The initial system used the natural finger only as a pointer 
and selector device. After the first user tests,  the zoom and 
rotation functions were added to the application.  Further 
work will include the use of the finger to select portions of 
the virtual model or to do more complicated grouping of the 
data in the model. In this way users will be able to operate 
an AR interface with natural finger pointing to duplicate 
what is traditionally done on a desktop screen with a mouse.  

The current prototype was shown to a large, diverse 
group of potential users at a demonstration held in a hotel 
ballroom. Due to the surrounding noise levels, voice control 
was not used.  No special lighting was used nor were any 
adjustments made to the system to handle conditions 
different from our lab environment. A sheet of markers was 

 
Figure 11: Camera pose tracking based on a 
3D table surface (A) and with ARToolkit 
fiducials introduced into the scene (B) for the 
same camera position.  

A  

B  



 

placed on the table and the wall. Each user had a few 
minutes to interact with the systems.  Most were able to 
work the pointer tracking in the model with minimal 
instruction.  Users had better success with the smaller 
virtual model since the model did not occlude their hand.  
The visual feedback showing the location of the hand or 
pen was important since the pointer will dip underneath the 
model at times.  Users gave the feedback that using the 
pointer as a selection and interaction tool was valuable. 

 

7 Conclusions 
 
Approaches for interaction with AR content is an active 

area of research. In the past researchers have explored a 
variety of technologies including wired magnetic tracking 
and vision-based fiducial markers. In this work we 
introduce the idea of using dense stereo technology to 
provide camera pose information and free-hand interaction. 
Interfaces that use dense stereo are possible because of the 
recent development of real time stereo vision systems, such 
as Tyzx’s DeepSea hardware. 

In this paper we have described algorithms for pointer 
tracking and camera pose determination from a reference 
plane. We have demonstrated both of these algorithms in a 
visualization interface for the petroleum industry. Although 
the current performance is slower than desired, users have 
reported that they find it natural to use their hand to interact 
with the virtual dataset and can see the potential for the 
technology. 

However there are some limitations with the current 
system.  The fact that the image of hand or pointer did not 
occlude the model in the display was disorienting to the 
viewer even when a virtual pointer was displayed.  Future 
work will include use of depth information to provide the 
proper occlusion relationships between real and virtual 
objects.  This has been addressed by [23] in a feature based 
stereo system, but this approach was limited to skin colored 
objects, required simple (non-skin colored) backgrounds, 
and produced only a single depth measurement for the 
entire hand. Extension to this work [10] removed the focus 
on skin color by using edge based stereo in the portion of 
the image occupied by virtual objects. This work achieved 
10fps for small virtual objects running on a 16 CPU SGI 
Onyx2 IR.  Wloka used real-time stereo depth to provide 
occlusion information [21], however his system produced 
low quality real-time data, creating aesthetically 
unsatisfactory results.  The combination of intensity and 
higher quality real-time range data as presented in this 
paper could provide a useful solution to this common issue 
in AR which would run on a PC. 

Unlike previous real-time stereo hardware, which was 
not designed for mass production or embedded 
applications, the DeepSea ASIC has the potential to be very 
inexpensive when manufactured at moderate volumes.  Its 
small form factor will allow future versions of the hardware 

to incorporate the computation engine and the imagers in a 
single self-contained unit. 
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